QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency
نویسندگان
چکیده
Quantified Boolean Formulas (QBFs) present the next big challenge for automated propositional reasoning. Not surprisingly, most of the present day QBF solvers are extensions of successful propositional satisfiability algorithms (SAT solvers). They directly integrate the lessons learned from SAT research, thus avoiding re-inventing the wheel. In particular, they use the standard conjunctive normal form (CNF) augmented with layers of variable quantification for modeling tasks as QBF. We argue that while CNF is well suited to “existential reasoning” as demonstrated by the success of modern SAT solvers, it is far from ideal for “universal reasoning” needed by QBF. The CNF restriction imposes an inherent asymmetry in QBF and artificially creates issues that have led to complex solutions, which, in retrospect, were unnecessary and sub-optimal. We take a step back and propose a new approach to QBF modeling based on a game-theoretic view of problems and on a dual CNF-DNF (disjunctive normal form) representation that treats the existential and universal parts of a problem symmetrically. It has several advantages: (1) it is generic, compact, and simpler, (2) unlike fully nonclausal encodings, it preserves the benefits of pure CNF and leverages the support for DNF already present in many QBF solvers, (3) it doesn’t use the so-called indicator variables for conversion into CNF, thus circumventing the associated illegal search space issue, and (4) our QBF solver based on the dual encoding (Duaffle) consistently outperforms the best solvers by two orders of magnitude on a hard class of benchmarks, even without using standard learning techniques.
منابع مشابه
Symmetry Breaking in Quantified Boolean Formulae
Many reasoning task and combinatorial problems exhibit symmetries. Exploiting such symmetries has been proved to be very important in reducing search efforts. Breaking symmetries using additional constraints is currently one of the most used approaches. Extending such symmetry breaking techniques to quantified boolean formulae (QBF) is a very challenging task. In this paper, an approach to brea...
متن کاملEfficient Symmetry Breaking Predicates for Quantified Boolean Formulae
Many reasoning task and combinatorial problems exhibit symmetries. Exploiting such symmetries has been proved useful in reducing the search space. In this paper, a formal approach for symmetry breaking in quantified boolean formula is proposed. It make use of a new efficient technique for encoding the additional symmetry predicates in prenex clausal form. The new asymmetric formula is equivalen...
متن کاملShort Proofs for Some Symmetric Quantified Boolean Formulas
We exploit symmetries to give short proofs for two prominent formula families of QBF proof complexity. On the one hand, we employ symmetry breakers. On the other hand, we enrich the (relatively weak) QBF resolution calculus Q-Res with the symmetry rule and obtain separations to powerful QBF calculi.
متن کاملSymmetries of Quantified Boolean Formulas
While symmetries are well understood for Boolean formulas and successfully exploited in practical SAT solving, less is known about symmetries in quantified Boolean formulas (QBF). There are some works introducing adaptions of propositional symmetry breaking techniques, with a theory covering only very specific parts of QBF symmetries. We present a general framework that gives a concise characte...
متن کاملQBF Encoding of Generalized Tic-Tac-Toe
Harary’s generalized Tic-Tac-Toe is an achievement game for polyominoes, where two players alternately put a stone on a grid board, and the player who first achieves a given polyomino wins the game. It is known whether the first player has a winning strategy in the generalized Tic-Tac-Toe for almost all polyominoes except the one called Snaky. GTTT(p, q) is an extension of the generalized Tic-T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006